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ABSTRACT

Considering the time-consuming manual workflow in 2D
sketch animation production, we present an automatic solu-
tion by using videos as reference to animate the static sketch
images. This includes motion extraction from the videos
and injection into the sketches to produce animated sketch
sequences in which appearance properties from the source
sketches should be preserved. To reduce blurry artifact caused
by complex motions and maintain stroke line continuity, we
propose to incorporate inner masks of the sketches as an ex-
plicit guidance to indicate inner regions and ensure compo-
nent integrality. Moreover, to bridge the domain gap between
the video frames and the sketches when modelling the mo-
tions, we introduce a cyclic reconstruction mechanism to in-
crease compatibility with different domains and improve mo-
tion consistency between the sketch animation and the driv-
ing video. Extensive results demonstrate the superiority of
our method that outperforms existing methods both quantita-
tively and qualitatively.

Index Terms— 2D Animation, Video-driven Animation,
Motion Extraction, Motion Transfer

1. INTRODUCTION

2D animation is popular all over the world and still a main-
stream form in commercial animation industry. Current work-
flow of 2D animation production relies heavily on draw-
ing each keyframe manually, which is laborious and time-
consuming, given that an animation clip may contain hun-
dreds or thousands of keyframes [1]. Therefore, automatic
techniques for assisting with the animation production are in
great and urgent demand [2].

2D animation tends to start with a static character sketch
manifesting the content, followed by injecting motions to en-
able dynamics. Considering that abundant videos from the
Internet store a great diversity of motion information, it is in-
tuitive to use videos as a kind of driven reference in an au-
tomatic 2D animation generation workflow. To this end, we
propose a video-driven 2D sketch animation framework that
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Fig. 1. Our approach extracts motions from videos and in-
jects them into sketch images to produce 2D sketch anima-
tions with less blurry artifact and higher motion consistency.

extracts motions from the videos and transfers them to static
sketches to produce animated sequences. The framework is
applicable to both edge maps with fine-grained details and
real sketches with sparse lines, as shown in Fig. 1. The gen-
erated animation frames exhibit appearance aligned with the
given sketch, and motion consistent with the driven video.

There exist several works on image animation [3, 4, 5, 6],
although they focus more on images with colors and textures.
The two kinds of information help to identify inner regions of
the objects, and thus maintain integrality of the components in
the animated results even when complex motions (e.g., occlu-
sions) exist in the driving video. However, these approaches
fail to work on sketch images with apparently fewer colors
and textures, and generate blurry artifact that breaks apart the
continuous strokes or the object components, as can be seen
in Fig. 1. To overcome this issue, we propose to extract in-
ner masks from the sketches, and inject them into the anima-
tion framework to explicitly indicate the inner regions of the
line drawings. Such an explicit guidance largely reduces the
blurry artifact and the broken strokes/components in the pres-
ence of complex motions.

Another challenge in our framework is how to bridge the
domain gap between the video and the sketch image as they
have significantly different visual characteristics. Existing
methods [3, 4, 5, 6] designed for single-domain cases are
shown to struggle with motion transfer between two different
domains. We thus integrate the idea of cyclic processing com-



monly used in the cross-domain scenario into our framework,
and introduce a cyclic reconstruction mechanism. Formally,
we first transfer the video motion to the sketch to obtain the
resulting animation, from which we extract the motion again
for reconstructing the input video by propagating that mo-
tion to one of the video frames. The derived reconstruction
loss enforces that the motion from video to sketch animation
should be equivalent to that from sketch animation to video,
such that the motion extraction and injection processes in our
framework learn to be compatible to images from different
domains. As a result, the motion consistency between the
generated sketch animation and the video can be preserved.

We compare our approach to state-of-the-art image an-
imation algorithms through quantitative evaluations, qualita-
tive comparisons and a user study. The results corroborate the
superior effectiveness of our method in terms of preserving
appearance properties, reducing blurry artifact and maintain-
ing motion consistency. We also show that our framework,
while trained on visually detailed edge maps, generalizes well
to real sketches with fewer details and sparse strokes.

Our contributions can be summarized as follow:

• A video-driven 2D sketch animation framework that
preserves original appearance properties of the sketches
and reduces blurry artifact induced by occlusions in the
video.

• A cyclic reconstruction mechanism for extraction and
injection of cross-domain motions, which improves
motion consistency between the generated sketch se-
quence and the input video.

• Comprehensive experiments comparing with the state-
of-the-art methods demonstrate the superior perfor-
mance of our proposed method.

2. RELATED WORK

2.1. Image Animation

The image animation approaches can be categorized into two
lines: supervised and self-supervised methods. The super-
vised ones mainly focus on human body pose transfer [7, 8]
and facial motion reenactment [9, 10]. They model the geo-
metric structure through object-specific landmark detectors,
which are usually pretrained on a large amount of labeled
data. It is costly to obtain such a dataset and the pretrained
model, and these approaches are limited to specific object
types such as human body and face.

Self-supervised methods [3, 4, 5, 6] have been proposed
to address the above issues. They typically leverage a large
amount of unlabeled videos collected from the Internet and
design reconstruction losses to model self-supervised mo-
tion representations (e.g., keypoints [3, 4, 6] and local re-
gions [5]). After extracting motion representations from the
driving videos, they are used to estimate a dense motion flow

through a motion model, such as first-order Taylor expan-
sions [4] or Thin Plate Spline (TPS) transformations [6]. The
motion flow is injected into the static source image to produce
a dynamic sequence.

The methods above trained on data within a single do-
main tend to suffer from performance degradation when the
source image and the driving video come from different do-
mains, such as sketch images and videos with color frames in
our task. We thus propose an animation framework designed
for the cross-domain data, which produces high-quality 2D
animation that preserves appearance properties of the source
domain (i.e., the sketches) and conforms to the motion in the
target domain (i.e., the videos).

2.2. Cycle Consistency in Cross-domain Tasks

The concept of cycle consistency is widely used in cross-
domain tasks. CycleGAN [11] trains an unpaired image
translation model between two domains. Due to the lack
of ground-truth data, a cycle consistency loss that reverts a
translated image back to its original domain is able to iden-
tify the key properties of each domain and improve the trans-
lation quality. Inspired by CycleGAN, Jeon et al. [12] pro-
pose a cross-identity training scheme that enables realistic
motion transfer between subjects with obviously different ap-
pearances. Similarly, MAA [13] proposes a cyclic training
pipeline for boosting the performance of cross-domain mo-
tion transfer. We also integrate the concept of cycle consis-
tency into our framework, and introduce a cyclic reconstruc-
tion mechanism that bridge the gap between monochromatic
sketches and color frames in the video. The mechanism no-
ticeably enhances motion consistency in the resulting sketch
animation.

3. METHOD

3.1. Sketch Animation Framework

Our framework extracts motion information from an input
video and injects it into a static sketch image, and then gen-
erates a dynamic sketch sequence to form a 2D sketch anima-
tion. The approach processes the video frame-by-frame, as
shown in Fig. 2. We propose a cyclic reconstruction mech-
anism for our training pipeline, which consists of a video
frame-driven stage and a sketch frame-driven stage. It helps to
enhance the motion consistency between the generated sketch
sequence and the input video. During inference, we use the
first stage only for sketch animation production.

In the video frame-driven stage, a random frame from the
video with posture information m1 is used as a driving frame
Dvideo

m1 . Another input is a static sketch image Isketchm∗ with
an arbitrary posture m∗. The model in this stage generates a
sketch frame D̂sketch

m1 by extracting and transferring the pos-
ture m1 to the sketch Isketchm∗ while preserving its appearance
properties.
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Fig. 2. The architecture of our video-driven 2D sketch animation framework that extracts posture information from each video
frame and injects it into the sketch image to produce a resulting sketch frame with similar posture (a). We propose a cyclic
reconstruction mechanism which makes the framework extract such a posture from the synthetic sketch and transfer it back to
the video frame (b), in order to improve the motion consistency.

The main idea behind the sketch frame-driven stage is
to extract the posture m1 from the synthetic sketch frame
D̂sketch

m1 and transfer it back to the video frame so as to pro-
mote the cross-domain motion consistency. Thus, D̂sketch

m1

is used as a driving frame in this stage, and a random video
frame Ivideom∗ with an arbitrary posture m∗ is used as a source
image. After the motion transfer, the synthetic video frame
D̂video

m1 with posture m1 and the same identity as those in the
video should be equivalent to Dvideo

m1 , i.e., D̂video
m1 ≡ Dvideo

m1 .
This forms the cyclic reconstruction with a derived loss to en-
sure the cycle consistency of postures between two domains.
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Fig. 3. Comparisons of sketches synthesized with or without
cross-domain guidance from an inner mask.

Inner masks. With the pipeline above, the video-driven
sketch animation generation is still challenging, due to the
lack of color and texture information in sketches to distin-
guish the inner regions of the objects from background. This
issue increases the difficulty of the task, especially in anima-
tions with dense motion and occlusions. Without the guidance
of inner regions, continuous lines of the sketches tend to break

apart or intersect with other lines, leading to blurry artifact as
shown in Fig. 3.

To overcome the issue, we propose to incorporate inner
masks into our framework, which play the role of color or
texture for monochromatic sketches by indicating the inner
regions of the foreground object. The masks are produced us-
ing a pretrained saliency detector U2-Net [14]. After extract-
ing the masks, we concatenate them with the corresponding
video frame/image or sketch image/frame, serving as joint in-
puts to the networks, as illustrated in Fig. 2.

The region masks help the models in identifying the unity
of the lines and reducing their breakage and incorrect inter-
sections, which results in less blurry artifact as demonstrated
in Fig. 3.

3.2. Cyclic Reconstruction Mechanism

3.2.1. Video frame-driven stage

The model in this stage first extracts posture m1 from a video
driving frame Dvideo

m1 , and then transfers it to a source image
Isketchm∗ (with an arbitrary posture m∗) to produce a sketch
frame D̂sketch

m1 with the posture m1 while maintaining its
original appearance characteristics, as shown in Fig. 2-(a).
The inner masks are attached to the driving frame and the
source image as joint inputs, and we omit the notations of the
inner masks for brevity in the following sections.

Motion Extraction. We represent motion with Thin
Plate Spline (TPS) transformation [15] of keypoints for the
objects. With the two inputs Dvideo

m1 and Isketchm∗ , we uti-
lize a ResNet-based Keypoint Detector Ekp to estimate a
set of unsupervised keypoints Kvideo

m1 = Ekp(D
video
m1 ) and

Ksketch
m∗ = Ekp(I

sketch
m∗ ). They describe the structural fea-



tures of the objects in the input images. Then, both the key-
points Kvideo

m1 ,Ksketch
m∗ are equally divided into N groups (M

keypoints in each group) to represent local motion. The key-
points for the driving video frame and the sketch are one-to-
one corresponded through indexing, and thus we warp Isketchm∗
to Dvideo

m1 with minimum distortion by using N TPS transfor-
mations [15] Ti(i = 1, 2, ..., N):

min

∫∫
R2

(
∂2Ti
∂x2

)2

+ 2

(
∂2Ti
∂x∂y

)2

+

(
∂2Ti
∂y2

)2

dxdy,

s.t. Ti(Ksketch
m∗ (j)) = Kvideo

m1 (j), j = 1, 2, ...,M. (1)

The N warped sketches are combined and input to a Dense
Motion Composition Module to estimate N contribution
maps Cn ∈ RH×W (n = 1, ..., N), where H and W are the
height and width of the source sketch image. Then, these con-
tribution maps are activated by a softmax operation to make
them sum to 1 for each pixel position p:

Cn(p) =
exp (Cn(p))∑N
k=1 exp (Ck(p))

, n = 1, 2, ..., N. (2)

The normalized contribution maps reflect the influence
weight of the TPS transformations at each pixel position.
Thus, we use them to combine the N TPS transformations
to compute a dense motion flow T =

∑N
n=1 CnTn, which

stores the global motion from Isketchm∗ to Dvideo
m1 .

Motion Transfer. With the extracted motion informa-
tion T , we fuse it with the source sketch image Isketchm∗
in a skip-connected hourglass network that contains an en-
coder E1 and a decoder D1. After encoding the sketch im-
age into feature maps E1(Isketchm∗ ) ∈ Rh×w, we rescale the
dense motion flow T to size h × w, and then apply a pixel-
wise multiplication for them to obtain fused feature maps,
which are fed to the decoder for a synthesized sketch frame
D̂sketch

m1 = D1(E1(Isketchm∗ ), T ). The output frame is expected
to exhibit posture from Dvideo

m1 and appearance of Isketchm∗ .

3.2.2. Sketch frame-driven stage

This stage plays a fundamental role in our cyclic reconstruc-
tion mechanism, which shares the same pipeline as the video
frame-driven one, except for the inputs, as shown in Fig. 2-
(b). As a mirrored stage, we use the synthetic sketch im-
age D̂sketch

m1 as the driving frame, and a random video frame
Ivideom∗ with an arbitrary posture m∗ as the source image. The
Keypoint Detectors Ekp in this stage share network weights
from the video frame-driven stage. Therefore, by using them
to extract the posture information from D̂sketch

m1 and inject it
back to the video frame in a cyclic manner, we are able to en-
courage them to accommodate images from different domains
and capture the motion regardless of appearance variations.
This helps to improve motion consistency when processing
cross-domain images.

Formally, the Keypoint Detectors estimate unsuper-
vised keypoints Ksketch

m1
= Ekp(D̂

sketch
m1 ) and Kvideo

m∗ =
Ekp(I

video
m∗ ). Then, a dense motion flow T ′ storing motion

from Ivideom∗ to D̂sketch
m1 is produced and injected into a gener-

ative network similarly. We use a Dense Motion Composition
Module and an encoder-decoder network with the same archi-
tectures as those in the video frame-driven stage, but they are
trained separately. Finally, we have the output video frame
D̂video

m1 = D2(E2(Ivideom∗ ), T ′), which is expected to exhibit
posture m1 and the appearance properties of the video frame.
That is, D̂video

m1 should be equivalent to the original driving
frame Dvideo

m1 in the video frame-driven stage. This enables
us to enforce a cyclic reconstruction constrain between them,
which boosts the performance of our framework in motion
extraction and transfer.

3.2.3. Losses for Cyclic Reconstruction

In the video frame-driven stage, we produce a sketch frame
D̂sketch

m1 by injecting posture m1 into the sketch. During train-
ing, we can obtain its ground truth by extracting the edge map
of the input Dvideo

m1 as they share the same identity and pos-
ture m1. We denote the ground truth as D

sketch

m1 . A perceptual
loss is adopted to measure their difference:

Lperc =
1

L

L∑
l=1

∥∥∥Fl(D̂
sketch
m1 )− Fl(D

sketch

m1 )
∥∥∥
1
, (3)

where Fl(·) is feature map computed by the lth layer of a pre-
trained VGG-19 network [16]. D

sketch

m1 can be treated as a
warped version of Isketchm∗ with posture m1, so we following
TPSMM [6] and enforce an auxiliary constraint for the en-
coder based on the warped encoder features of Isketchm∗ and
the encoder features of the warped sketch D

sketch

m1 :

Lwarp1 =
∑
i

∥∥∥T (
E(i)
1 (Isketchm∗ )

)
− E(i)

1 (D
sketch

m1 )
∥∥∥
1
, (4)

where E i
1 is the ith layer of the encoder E1. This loss improves

the ability of the encoder in fusing motion into the source
image.

The subsequent sketch frame-driven stage is designed
for the cyclic reconstruction mechanism, which encourages
the cycle consistency between the synthesized video frame
D̂video

m1 and the input video frame Dvideo
m1 in the first stage.

Thus, we use the perceptual loss again as the cyclic recon-
struction loss:

Lrecon =
1

L

L∑
l=1

∥∥∥Fl(D
video
m1 )− Fl(D̂

video
m1 )

∥∥∥
1
. (5)

The auxiliary constraint for the encoder is also adopted via
the dense flow T ′:

Lwarp2 =
∑
i

∥∥∥T ′
(
E(i)
2 (Ivideom∗ )

)
− E(i)

2 (Dvideo
m1 )

∥∥∥
1
, (6)



where E i
2 is the ith layer of the encoder E2.

Table 1. Quantitative comparisons on MGif dataset.
Method L1(↓) LPIPS(↓) SWD(↓)

FOMM [4] 6.86 11.84 6.91
MRAA [5] 6.75 11.20 6.61

TPSMM [6] 6.42 10.75 6.12
Ours (w/o cyclic) 6.34 10.72 6.09
Ours (w/o mask) 6.30 10.61 6.10

Ours (full) 6.27 10.50 5.91

3.3. Training Objective

Besides the losses above, we also define constraints for the
Keypoint Detector Ekp following previous works [4, 5, 6], in
order to improve its robustness. We first create a nonlinear
transformation Tr with random parameters. Assuming that
keypoints of a warped frame by Tr are equivalent to warped
keypoints of that frame, we define the loss in both stages:

Leq1 =
∥∥Ekp(Tr(Dvideo

m1 ))− Tr(Ekp(D
video
m1 ))

∥∥
1
,

Leq2 =
∥∥Ekp(Tr(Ivideom∗ ))− Tr(Ekp(I

video
m∗ ))

∥∥
1
.

(7)

The full objective function of our end-to-end training
pipeline is:

L = Lperc + Lwarp1 + Lrecon + Lwarp2 + Leq1 + Leq2. (8)

3.4. Testing Phase

During testing, we use only the video frame-driven stage in
Fig. 2-(a) for sketch animation generation. Given a source
sketch Isketchm∗ and a driving video {Dvideo

mt
}(t = 1, 2, ..., T )

with T frames, we generate a sequence of {D̂sketch
mt

} to form
the dynamic sketch animation.

4. EXPERIMENTS

4.1. Comparisons with Baseline Methods

We compare our approach with three advanced methods,
namely FOMM [4], MRAA [5] and TPSMM [6] on MGif
dataset [3] with animated frames of cartoon characters.

Quantitative Evaluation. We perform this evaluation
via a cross-domain video reconstruction task, where we an-
imate a source sketch with a series of video frames with the
same identity. We follow the existing methods above and use
the following metrics: (1) L1 distance which measures vi-
sual similarity between the animated sketch frames and their
ground truth derived from the extracted edge maps of the
video frames, (2) LPIPS score for perceptual and structural
similarity, and (3) Sliced Wasserstein Distance (SWD) [17]
which reflects the difference of distributions of two videos in
our context.

Source   Driving FOMM MRAA TPSMM Ours

Fig. 4. Comparisons with baseline methods. Please refer to
the supplemental video for more results on real sketches and
animated sequences.
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Fig. 5. User study of video-driven sketch animation.

As shown in Table 1, FOMM and MRAA perform poorly
on all metrics, probably because their rigid motion represen-
tation is not suitable for sketch data. TPSMM works better
than them, but is still inferior to ours due to the lack of con-
sidering cross-domain adaption. In contrast, our framework
exhibits the best performance, indicating that the proposed in-
ner mask injection and cyclic reconstruction mechanism help
to ensure appearance preservation and cross-domain motion
consistency.

Qualitative Evaluation. We demonstrate the results of
sketch animation on both edge maps and real sketches in
Fig. 1 and Fig. 4, where we select three representative frames
in the driving video. FOMM [4] and MRAA [5] work poorly
in preserving the appearance properties (e.g., the head of the
horse and the dog). What’s worse, their results exhibit unde-
sired blurry artifact that is detrimental to the visual quality.
While TPSMM [6] is able to maintain the identities of the
objects, it generates blurry artifact and incontinuous stroke
lines likewise. Motion inconsistency also occurs in some
cases (e.g., the second row of the horse). In sharp contrast,
our approach shows superior performance in preserving both
the appearance properties and motion consistency in presence



of large motion, and alleviating the blurry issue. Although
trained solely with edge maps, our framework generalizes
well to real sketches with sparse lines.

User Study. We invite 40 participants for a user study to
assess the performance of our method and the baselines. We
randomly choose 15 sketches and 15 driven videos from the
test set to generate the sketch animations. 3 random frames
in each group are selected for the study. Each participant is
assigned 5 groups of results, and required to score 1 to 5 for
each method according to three aspects, namely appearance
preservation, motion consistency, and overall quality. As can
be seen in Fig. 5, the averaged scores suggest that our ap-
proach has the best performance in these criteria.

 Full model

w/o cyclic 

reconstruction

Source 

sketch    

Driving

 frames

w/o mask 

guided

Fig. 6. Qualitative results of ablation study.

4.2. Ablation Study

We evaluate our inner mask injection method and cyclic re-
construction mechanism via ablation studies. For the former,
we delete the masks in the pipeline. For the latter, we re-
move the sketch frame-driven stage in our framework (Fig. 2)
to disable the cyclic reconstruction. The quantitative results
are shown in Table 1, where the performance degrades with-
out any of them. From visual results in Fig. 6, we see that
the model without inner mask guidance (“w/o mask-guided”)
tends to produce blurry artifact where complicated motion or
occlusion occurs, which breaks apart the continuous stroke
lines. The model without the cyclic reconstruction mecha-
nism (“w/o cyclic reconstruction”) fails to adhere to motions
in the driving video frames in most cases (e.g., the legs). Our
approach with the two technical components addresses the is-
sues and generates visually appealing animated frames.

5. CONCLUSION

We propose a video-driven 2D sketch animation framework
that extracts the motion information from the video and trans-
fers it to the sketch image to create an animated sketch se-
quence. An inner mask injection strategy and a cyclic recon-
struction mechanism are introduced to preserve visual prop-
erties of the sketch and ensure motion consistency with the

video. While producing visually appealing sketch anima-
tions, our approach might still generate blurry strokes in cases
with complicated motions. To address this issue, vector-level
animation techniques that operate on parameterized strokes
could be incorporated into our approach, which is a promis-
ing future direction.
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