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Fig. 1. Given consecutive raster keyframes and a single vector drawing from the starting keyframe only (with marks ‘∗’), our method generates vector images
for the remaining keyframes with one-to-one stroke correspondence. The framework trained with clean line drawings generalizes well to rough sketches.
The generated results can be directly imported into an inbetweening system to produce inbetween frames to form 2D animation (see supplemental video).
Sub-figures in boxes show differences between consecutive frames, with magenta for the previous and black for the current. Gunman from paper [Yang et al.
2018] is courtesy of Eugene Babich ©2018 John Wiley & Sons Ltd. Bigvegas2 is from [Shugrina et al. 2019].

To alleviate human labor in redrawing keyframes with ordered vector strokes
for automatic inbetweening, we for the first time propose a joint stroke trac-
ing and correspondence approach. Given consecutive raster keyframes along
with a single vector image of the starting frame as a guidance, the approach
generates vector drawings for the remaining keyframes while ensuring one-
to-one stroke correspondence. Our framework trained on clean line drawings
generalizes to rough sketches and the generated results can be imported into
inbetweening systems to produce inbetween sequences. Hence, the method
is compatible with standard 2D animation workflow. An adaptive spatial
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transformation module (ASTM) is introduced to handle non-rigid motions
and stroke distortion. We collect a dataset for training, with 10k+ pairs of
raster frames and their vector drawings with stroke correspondence. Com-
prehensive validations on real clean and rough animated frames manifest
the effectiveness of our method and superiority to existing methods.
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1 INTRODUCTION
Generating inbetween frames from keyframes is a fundamental
component in keyframe-based 2D animation production. As shown
in Fig. 2, in a conventional workflow with an inbetweening product
(e.g., CACANi [2020]), artists usually draw raster images or load
prepared ones as drafts. These images are mostly rough, requiring
the artists to redraw or clean up with vector strokes as keyframes.
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Keyframe 2Keyframe 1

Fig. 2. Interface of an inbetweening product CACANi [2020], where users
are required to redraw all the drafts with vector strokes in the same order
as keyframes. It provides a navigator for each stroke (arrows in keyframe 1)
to guide the redrawing of a corresponding stroke in another keyframe. Tree
images ©2011 ACM, Inc.

While tracing, one-to-one correspondence between strokes in the
keyframes should be ensured to allow subsequent stroke interpola-
tion process to produce the inbetweens. Given that a real animation
may contain quite a few keyframes and each consists of plentiful
strokes [Jiang et al. 2020], the process above is tedious and time-
consuming. To reduce the human labor in this fundamental step for
the automatic inbetweening, we for the first time introduce a task
called joint stroke tracing and correspondence. As shown in Fig. 1,
given a series of raster keyframes, this task requires only a single
vector image manually traced for the starting frame, and then auto-
matically generates vector drawings for the remaining keyframes
with one-to-one stroke correspondence. While the single vector
input is necessary as a reference, the workload from the artists
is largely reduced compared with the conventional full-sequence
redrawing process, which accelerates the 2D animation pipeline.
We extend a learning-based line drawing vectorization frame-

work [Mo et al. 2021] to this fundamental task of inbetweening and
animation, which simultaneously computes vectorization and, more
importantly, stroke correspondence. Although trained on synthetic
clean line drawing data, the framework generalizes well to real ani-
mated frames with high complexity, and even rough sketches with
overdrawn and uneven lines. The generated results, albeit with mi-
nor artifacts induced by the topology structure change or occlusion
(see yellow arrows in Fig. 1), can be imported into interactive inbe-
tweening systems to make a quick modification (for 1–3 strokes) and
produce natural inbetweens. Hence, our approach is practical and
compatible with the standard 2D animation workflow to promote
the productivity.
Continuous non-rigid motions in consecutive keyframes tend

to give rise to incremental spatial variation (see boxes in Fig. 1)
and geometric distortion of strokes (see green arrows). The issues
notably increase the difficulty in predicting corresponding strokes
with proper proportion of length and orientation. To tackle the
challenges, we propose an adaptive spatial transformation mod-
ule (ASTM), which helps to find correspondence by reducing the
variation and increasing the similarity between strokes in local

patches via predicted transformations. The module is trained in a
self-supervised manner without relying on ground-truth transfor-
mation parameters.

Due to the lack of a dataset with vector stroke correspondence for
training, we collect one containing consecutive line drawing frames
and their vector drawings along with the annotation of stroke cor-
respondence. The data are synthesized via an automatic algorithm
that mimics the real animated keyframes with non-rigid motions.
Then, manual review is done to filter out undesired synthesis, which
guarantees the quality of the data while alleviating the burden of
manual tracing and correspondence identification. The dataset is
expected to facilitate the research of automatic inbetweening.
We evaluate our approach with real clean and rough animated

frames of various resolutions and with fairly complex motions. The
results in the ablation study and comparisons with existing meth-
ods corroborate the effectiveness of our framework. The generated
results are imported into an inbetweening product CACANi [2020]
to obtain inbetween frames forming the 2D animation 1.

The main contributions of this work are summarized as follows:
(1) A joint stroke tracing and correspondence framework for

consecutive raster keyframes according to a vector input of
the starting frame. While trained with clean line drawings, it
generalizes well to rough sketches.

(2) An adaptive spatial transformation module (ASTM) based on
self-supervised learning that helps to cope with keyframes
with fairly large motions or stroke distortion.

(3) A dataset including 10k+ pairs of raster frames and their
vector drawings with stroke correspondence, collected via an
automatic algorithm followed by manual review.

(4) Extensive validations on high-resolution real drawings with
clean or rough sketches. By importing the results into an
inbetweening product, 2D animation is created.

2 RELATED WORK

2.1 2D Animation and Inbetweening
The problem of computer-aided 2D animation and automatic in-
betweening has been studied for about fifty years [Catmull 1978;
Dalstein et al. 2014, 2015; Even et al. 2023; Fekete et al. 1995; Kort
2002; Miura et al. 1967; Reeves 1981], and is still an open and chal-
lenging problem. While a number of commercial solutions have
been developed, most are designed for either hand-drawn anima-
tion without support for automatic inbetweening [Blender 2023;
DWANGO 2023; Toon Boom 2022; TVPaint 2023], or specific use
cases such as dynamic expressions or rigged characters [Adobe
2022; Live2D 2023; Reallusion 2023]. CACANi [2020] is tailored for
automatic inbetweening, while requiring users to draw the corre-
sponding strokes in order between keyframes to facilitate stroke
interpolation. As a result, these systems are not directly applicable
to our task. In academia, plenty of works have been introduced
and they can be classified into two main lines [Jiang et al. 2020]:
raster-based and vector-based approaches.

The raster-based methods first construct associated templates or
embeddings (e.g., triangular meshes or lattice grids) for objects in
the raster keyframes, and then adopt as-rigid-as-possible (ARAP)
1The source code can be found at https://github.com/MarkMoHR/JoSTC.
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techniques [Alexa et al. 2000; Igarashi et al. 2005; Sỳkora et al.
2009] for shape deformation [Dvorožnák et al. 2018; Smith et al.
2023]. Methods in this category are more suitable for rigid anima-
tions [Dvorožňák et al. 2017; Su et al. 2018], while limited in typical
2D animations with non-rigid nature and occlusions.

The vector-based approaches focus on two basic problems: corre-
spondence and interpolation of the parametric strokes in 2D line
drawings. Here we mainly discuss the correspondence problem our
approach targets. For the interpolation, we refer readers to the liter-
atures [Even et al. 2023; Jiang et al. 2020; Yang 2017]. Early systems
require users to manually identify correspondences of the strokes
between keyframes [Burtnyk and Wein 1975; Durand 1991; Reeves
1981]. To alleviate the tedious work, a number of automatic cor-
respondence and inbetweening systems have been developed and
introduce different measurements of stroke similarity and matching
algorithms [Even et al. 2023; Kort 2002; Whited et al. 2010; Yang
2017; Yang et al. 2018]. They require users to input keyframes with
vector strokes, which are incompatible with our task where only
a single vector drawing from the starting frame is provided. Our
setting largely reduces the workload of manually redrawing all the
keyframes and increases productivity.
A recent geometrized inbetweening method named AnimeIn-

bet [Siyao et al. 2023] extracts endpoints from raster line drawings
to build graphs, and reformulates the inbetweening task as a vertex
correspondence and reposition problem. Due to imperfect predic-
tions of correspondence and visibility for a large number of vertices,
it easily produces discontinuous lines and flickering noisy points.
In contrast, vector strokes in our approach are more compact and
benefit the line continuity.

2.2 Pixel-wise Correspondence
Per-pixel correspondence based on feature matching [Jiang et al.
2021b; Sarlin et al. 2020] is also commonly used in the field of 2D
animation [Navarro et al. 2021; Xu et al. 2022a; Yu et al. 2020].
Each pixel is encoded into a feature descriptor for a similarity-
based registration. Other works rely on optical flow prediction [Sun
et al. 2018; Teed and Deng 2020] to associate the pixels between
keyframes [Chen and Zwicker 2022; Li et al. 2021; Narita et al.
2019; Siyao et al. 2021]. Inbetweens are produced by warping the
keyframeswith the predicted pixel-wise correspondencemaps. These
solutions possibly give rise to discontinuous strokes and noises for
line drawings due to the separated prediction of discrete pixels. In
contrast, the continuous and neat representation of vector strokes
benefits high-quality inbetweening.

2.3 Vectorization and Sketch Simplification
Themethods of vectorization [Bessmeltsev and Solomon 2019; Favreau
et al. 2016; Guo et al. 2019; Guţan et al. 2023; Liu et al. 2022; Mo et al.
2021; Noris et al. 2013; Puhachov et al. 2021; Stanko et al. 2020] and
rough sketch simplification [Liu et al. 2023, 2018, 2015; Simo-Serra
et al. 2018a,b, 2016; Xu et al. 2019; Yan et al. 2020] are proposed for
a single input image, and probably produce vector drawings with
large variations in stroke number and order for different inputs. In
our task, such variations tend to be detrimental to the one-to-one
stroke correspondence.

A vectorization approach Virtual-Sketching [Mo et al. 2021] is
close to our framework in the recurrent manner for stroke predic-
tion and the patch-based modeling scheme. However, our approach
works towards a largely different task on stroke tracing while en-
suring stroke correspondence simultaneously. The additional cor-
respondence process requires computation of appropriate length
proportion of the strokes especially when large geometric distor-
tion occurs. Hence, modeling more comprehensive information in
the patches, e.g., context of the strokes, is crucial in our task. We
propose a self-supervised learning-based transformation module to
tackle this challenge.

2.4 Datasets for 2D Animation
Several datasets exist in the field of 2D animation, while most are
constructed for specific use cases, such as cartoon generation [Siaro-
hin et al. 2019], animation video interpolation [Siyao et al. 2021],
animation head reenactment [Kim et al. 2022], figure detection and
pose estimation [Smith et al. 2023], etc. CreativeFlow+ dataset [Shug-
rina et al. 2019] contains animated sequences rendered from ani-
mated 3D scenes or characters, along with per-pixel correspon-
dence labels such as optical flow and correspondence maps. Ani-
meRun dataset [Siyao et al. 2022] synthesizes 2D animation frames
from open-source 3D movies and provides pixel-wise (optical flow)
and region-wise (segment matching) correspondences. Compared
to them, our collected dataset is the first large-scale line drawing
dataset with one-to-one vector stroke correspondence annotated
for consecutive raster frames, which applies to the automatic inbe-
tweening task.

3 JOINT STROKE TRACING AND CORRESPONDENCE

3.1 Overview
Given consecutive raster keyframes and a vector drawing of the
starting frame as a guidance, our approach predicts parametrized
strokes for the remaining keyframes while ensuring one-to-one
stroke correspondence simultaneously, which is a fundamental step
in automatic inbetweening and 2D animation. We follow the same
terminology that a drawing is formed by several stroke chains (i.e.,
long curves), each of which consists of one or more continuously
connected strokes [Jiang et al. 2020]. As illustrated in Fig. 3-(a), our
proposed framework essentially applies to two successive keyframes,
denoted as reference and target. When taking more keyframes into
account, the generated vector result is adopted as a second reference
and propagated to the next frame.

The framework processes the stroke chains one after another. It
is mainly comprised of a starting point matching model and a stroke
tracing and correspondence model. The former works once at the
beginning of each stroke chain, and uses the starting point in the
reference as a guidance to locate the matchup in the target image.
With the matched starting position, the latter model produces the
corresponding vector strokes on the chain one by one according
to the reference vector drawing. At the end of a stroke chain, we
switch to next chain and repeat the two kinds of operations above.
We integrate the concept of window-based processing in [Mo et al.
2021] into our framework by modeling local patches cropped from
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Fig. 3. Our framework takes as inputs consecutive raster frames, denoted as reference and target, along with a vector drawing of the reference containing
several stroke chains (i.e., long curves), each of which comprises connected strokes. It performs a joint stroke tracing and correspondence task by generating
corresponding vector strokes one by one (a). It consists of two models: one for matching starting point of each stroke chain (b), the other for predicting
parameters of the associated strokes (c). The whole process works in a local view based on patches cropped by windows. A proposed plug-and-play adaptive
spatial transformation module (ASTM) is integrated into the two models to handle large motions or stroke distortion.

the input images (Fig. 3-(b & c)), allowing our approach to work on
images of arbitrary resolutions and high complexity.
To handle fairly complex motions that may induce spatial varia-

tions or deformations between strokes in the reference and target
patches, we propose an adaptive spatial transformation module
(ASTM) to reduce the variations by ensuring content alignment
between the patches through spatial transformations, which brings
obvious performance boosts to the subsequent predictions of start-
ing points or strokes. The ASTM is a plug-and-play module trained
separately, so we introduce the starting point model and the stroke
model without the ASTM in Sec. 3.2 and 3.3 first, and then details
of the ASTM in Sec. 3.4.

3.1.1 Stroke Representation. Following the stroke types in inbe-
tweening products (e.g., CACANi [2020]), we use cubic Bézier curves
𝑞𝑡 = (𝑥0, 𝑦0, 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3), comprised of two endpoints and
two control points, to represent a stroke at step 𝑡 . The strokes lie
within the processing window, so we define a local coordinate sys-
tem [−1, +1] with respect to the window area for the stroke parame-
ters, while they can be mapped back to the global coordinates given
center position and size of the window.

3.2 Starting Point Matching Model
Due to the non-rigid motions, starting points of the stroke chains
tend to vary between the reference and the target frames. Therefore,
this model performs a starting point matching process per stroke
chain. Below we first introduce the original pipeline of this model
without the ASTM-P in Fig. 3-(b).

Given two raster frames and a starting point from a stroke chain
in the reference, we first crop the patches using the aligned cropping
technique from [Mo et al. 2021], via a window with a center position
and a pre-defined size proportional to the image size. We use the
given reference starting point as the center to locate the cropped
patches of both the reference and the target images. They are then
used as inputs for predicting the matched starting point in the target

Reference image Target image Additional inputs Target matching prediction

Ref.  stroke image (blue)

Target canvas image

Case 1

Case 2

1 3

2

1 3

2

1 3

2

1

2Ref.  stroke image (blue)

1 3

2

Fig. 4. In starting point matching model, some visual signals should be
adopted as inputs to help in determining the predictions of matching point.
Here we show target images in two cases using the same reference. In case
1 with stroke connectivity change, when given only the reference image
and the target one, it is difficult to choose the left or the right point in the
target image as the matchup. Here a reference (‘ref.’ for short) stroke image
connecting to the reference starting point helps to reject the left candidate.
In case 2 with changes in both stroke connectivity and shape, even after
using the reference stroke image as the indicator, it is still not easy to choose
between the candidates. Here the target canvas image (recording all the
predicted strokes thus far) helps as it avoids the matchup in drawn area,
which therefore filters out the left candidate and remains the right one.

patch. As illustrated in Fig. 4, we notice additional visual signals
can benefit the prediction. In the presence of stroke connectivity
change (case 1), a reference stroke image helps to indicate where the
matched starting point should be by telling where the subsequent
stroke tracing should start from. In more complex cases where both
stroke connectivity and shape changes exist (case 2), the adopted
reference stroke image is insufficient here and a target canvas image
facilitates the prediction by limiting the search space within the
undrawn area. The two kinds of images are cropped into patches
and adopted as additional inputs to the model.
A starting point prediction network is employed to encode the

cropped patches, which is built upon convolutional layers followed
by multi-layer perceptrons (MLP). The reference and the target
patches are processed by separated convolutional layers, and their
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features are fused in the MLP. The network predicts the matching
starting point 𝑝𝑡 in the target patch. It lies in a local coordinate
system [−1, +1] with respect to the window area, which can be
mapped back to the global coordinate system for usage in the fol-
lowing stroke tracing and correspondence process.

3.3 Stroke Tracing and Correspondence Model
This model produces vector strokes in correspondence with those
in the reference in a recurrent manner, by generating the strokes
one by one. Below we first introduce its original pipeline for each
stroke without the ASTM-S in Fig. 3-(c).
We integrate the ideas of window-based mechanism and differ-

entiable rendering in Virtual-Sketching [Mo et al. 2021] into this
model. With the reference and the target frames as inputs, a window
is used to crop local patches from them, and then the vector stroke
𝑞𝑡 is predicted based on the patches. Afterwards, the parametrized
stroke is rendered onto a raster canvas and the window moves to
the end point of the stroke to start a new iteration. The canvas after
the final iteration stores all the predicted strokes. This simulates the
tracing procedure for the target frame.
Specifically, at each step 𝑡 , we use a cropping window with a

size proportional to the length of the reference stroke. Similar to
the starting point model, we also consider patches from the ref-
erence stroke and the target canvas to provide necessary infor-
mation. A stroke prediction network encodes these patches with
separated convolutional layers and fuses the features through a
recurrent neural network (RNN). It finally predicts the parameters
𝑞𝑡 = (𝑥0, 𝑦0, 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3) of the corresponding stroke in a
local coordinate system [−1, +1] with respect to the window area.
After mapping 𝑞𝑡 back to the global coordinate system, a differ-
entiable renderer DiffVG [Li et al. 2020] is employed to convert
the vector parametrization into a full-size stroke image 𝑆𝑡tar, which
is then added to the previous canvas image 𝐶𝑡−1

tar to form a new
one 𝐶𝑡

tar. The pipeline repeats until all the strokes on the chain are
processed.

3.4 Adaptive Spatial Transformation Module (ASTM)
While our framework is able to work on simple cases with the
original pipeline introduced above, it tends to suffer noticeable per-
formance degradation in real cases with complex motions involved
in the strokes. As shown in Fig. 5, in prediction of matching starting
point (top row), the contents in the cropped patches between the
reference and the target vary dramatically due to the large motion,
and the expected matchup in the target is even outside the patch (a
& b). Consequently, the derived prediction inevitably fails due to
the limited window view (c). When predicting the corresponding
stroke (bottom row), the model with the original pipeline is found
to be fragile in cases with large geometric deformation (g & h), and
tends to predict a stroke that misaligns with the target drawing (i).
To overcome the issues caused by the complicated motions and

the limited view of local windows, we propose a self-supervised
learning-based adaptive spatial transformationmodule (ASTM), which
predicts a spatial transformation, including a combination of trans-
lation, scaling and rotation, for the initial processing window in the
target to enable an adaptive local view (Fig. 5-(d or j)). With the

transformed window, the cropped patch of the target is similar in
content to the reference patch. Such a content alignment process
reduces the spatial variations caused by the deformation and pro-
vides consistent contexts to find corresponding starting points with
similar spatial characteristics (a & e) or corresponding strokes with
correct orientation and proportion of length (g & k). The transfor-
mation is invertible and thus allows the prediction to be mapped
back to coordinates of the original target image (f or l).

3.4.1 Architecture of ASTM. The ASTM is designed in a plug-and-
play manner and can be integrated into both the starting point
matching model and the stroke tracing and correspondence model,
as shown in Fig. 3-(b & c). We denote the module for the point
model as ASTM-P and that for the stroke model as ASTM-S, as they
differ in output transformation parameters 𝜃 . ASTM-P outputs the
parameters 𝜃𝑃 including translation, scaling and rotation, while 𝜃𝑆
from ASTM-S contains only the scaling and rotation, since addi-
tional shifting for the first endpoint is not needed when generating
connected strokes. The two modules share exactly the same pipeline
and network architecture.
As shown in Fig. 3, the ASTMs take as inputs the reference

and the target images, and crop patches with the initial window
akin to the start-up processes of the original starting point match-
ing model and stroke tracing and correspondence model. Then, a
transformation prediction network built with convolutional lay-
ers followed by an MLP generates the transformation parameters
𝜃𝑃 = (𝑡𝑥 , 𝑡𝑦, 𝑠𝑥 , 𝑠𝑦, 𝛼) ∈ R5 or 𝜃𝑆 = (𝑠𝑥 , 𝑠𝑦, 𝛼) ∈ R3. (𝑡𝑥 , 𝑡𝑦) ∈
[−1, +1] are the translation offsets with respect to the window area.
(𝑠𝑥 , 𝑠𝑦) ∈ [0.2, 2.0] are the non-isotropic scaling parameters with
pre-defined upper and lower bounds. 𝛼 ∈ [−𝜋, +𝜋] is the rotation
angle. Prediction of correct transformation parameters is key to the
patch alignment. We train both ASTM modules in a self-supervised
scheme based on a shape similarity measurement, without relying
on ground-truth transformation parameters. The training details
are depicted in Sec. 3.5.1.

3.4.2 Integration into Main Workflow. With the predicted transfor-
mation, we incorporate it into the main workflow. The integration
includes two processes: (1) transformed cropping that works with
the cropping operation for the target image by using a transformed
window to crop a patch with similar content to the reference, as
illustrated in Fig. 5-((d to e) or (j to k)), and (2) inverse transformation
that maps the prediction, i.e., the starting point or the stroke, from a
transformed coordinate system (local orthogonal) back to the global
one, as illustrated in Fig. 5-((e to f) or (k to l)). Both processes are
differentiable and thus amenable to integration in an end-to-end
training model.

Transformed Cropping. In this process, we rely on two opera-
tions in Spatial Transformer Networks (STN) [Jaderberg et al. 2015]:
parameterized sampling grid generation and differentiable image
sampling. First, a transformation T𝜃 of any parameterized form is
used to generate a sampling grid, i.e., a set of points, as illustrated
in Fig. 6. Then, by sampling from the input image at the grid points
in a differentiable manner, an output image forming a warping of
the input is obtained. We utilize the transformation predicted by
our ASTMs to form T𝜃 .
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Fig. 5. Issues of large motions between consecutive keyframes, which lead to situations where the expected matched starting point in the target is outside the
processing window (b), and geometric deformation induces spatial variations (h). Our adaptive spatial transformation module (ASTM) handles the motions by
predicting transformations to align the patches in content (a & e, g & k). Green dots denote the predicted points. Stick images from paper [Yang 2017] are
courtesy of Jie Li ©2018, IEEE.

𝐺

𝒯𝜃 𝐺

Fig. 6. Sampling grid generation in the transformed cropping process. Stick
image from paper [Yang 2017] is courtesy of Jie Li ©2018, IEEE.

Specifically, a regular grid 𝐺 = {𝐺𝑖 } ∈ Rℎ×𝑤 of pixels 𝐺𝑖 =

(𝑥 ′
𝑖
, 𝑦′

𝑖
) in a local orthogonal coordinate system is defined for the

cropped target patch via the transformed window. ℎ and 𝑤 are
the height and width from the initial window. The sampling grid
T𝜃 (𝐺) in the original target image is a warping of the regular grid
𝐺 with transformation T𝜃 . In our approach, T𝜃 is represented with
the transformation parameters 𝜃 = (𝑡𝑥 , 𝑡𝑦, 𝑠𝑥 , 𝑠𝑦, 𝛼) predicted by the
ASTMs. For brevity, we omit the subscript of 𝜃 denoting ASTM-P
or ASTM-S and use the 5-fold parameters as (𝑡𝑥 , 𝑡𝑦) = (0, 0) can be
used for 𝜃𝑆 . We define the transformation matrices for translation,
scaling and rotation as:

𝑀𝑡 =


1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

 , 𝑀𝑠 =


𝑠𝑥 0 0
0 𝑠𝑦 0
0 0 1

 , 𝑀𝑟 =


cos𝛼 sin𝛼 0
− sin𝛼 cos𝛼 0

0 0 1

 ,
(1)

respectively. As the predicted (𝑡𝑥 , 𝑡𝑦) ∈ [−1, +1] is a relative offset
with respect to the center position (𝑝𝑥 , 𝑝𝑦) of the initial cropping
window in size ℎ ×𝑤 , it should be mapped back to the global coor-
dinate system before formulating the𝑀𝑡 :

𝑡𝑥 = 𝑡𝑥 ×𝑤/2 + 𝑝𝑥 , 𝑡𝑦 = 𝑡𝑦 × ℎ/2 + 𝑝𝑦 . (2)

The combination of these transformations forms a 2D affine trans-
formation 𝐴𝜃 = 𝑀𝑟 ·𝑀𝑠 ·𝑀𝑡 , representing T𝜃 . Then, we generate
the sampling grid by establishing the point-wise transformation:

©«
𝑥𝑖
𝑦𝑖
1

ª®¬ = T𝜃 (𝐺𝑖 ) = 𝐴𝜃
©«
𝑥 ′
𝑖

𝑦′
𝑖
1

ª®¬ , (3)

where (𝑥𝑖 , 𝑦𝑖 ) is the position in the original target image that defines
the sampling grid point. With this sampler, we subsequently per-
form a differentiable image sampling following the operation in the
STN [Jaderberg et al. 2015], which takes as inputs the original target
image and the set of sampling points, and produces the cropped
patch. We recommend readers to refer to the STN paper for details.

Inverse Transformation. The cropped target patch formed by the
regular grid𝐺 lies in a local orthogonal coordinate system (Fig. 5-(e
or k)). Hence, the predictions based on the cropped patch, including
the matched starting point 𝑝𝑡 or the control/end points in 𝑞𝑡 of
the corresponding strokes, ought to be mapped back to the global
coordinate system. As in the sampling grid generation operation
above, we have established a point-wise transformation (Eq.(3))
from a point in the transformed patch (i.e., the regular grid) to
a point in the original target image, the inverse transformation
can be performed following Eq.(3) directly on the predicted points.
The starting point 𝑝𝑡 ∈ [−1, +1] and the control/end points in
𝑞𝑡 ∈ [−1, +1] are relative positions to the center of the window, and
thus they are converted into global positions prior to the inverse
transformation.

3.5 Training
The starting point and stroke models in our framework are trained
separately. The ASTMs (ASTM-P and ASTM-S) are plug-and-play
and the integration is fully differentiable, so we train them separately
prior to the two models. When training the stroke tracing and
correspondence model, the ASTM-S is loaded and frozen. While the
starting point matching model is trained without using ASTM-P in
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order to make it robust to training data. Then in inference phase
on real complicated cases, the ASTM-P is integrated to improve
generalization ability and gain further performance boosts.

3.5.1 Training of ASTMs. The ASTM-P and ASTM-S are trained
in a similar procedure based on a self-supervised learning scheme,
without relying on ground-truth transformation parameters. Since
the goal is to make the patches similar in content, we perform the
transformed cropping with the predicted transformation to obtain
a new target patch and then measure its similarity to the original
reference patch. The key problem here is to impose a proper shape
similarity measurement. We find a perceptual distance introduced
in [Mo et al. 2021], a kind of structural loss, works very well. It relies
on a VGG-16 model [Simonyan and Zisserman 2015] trained on a
sketch classification task on QuickDraw dataset [Ha and Eck 2018],
so it is sensitive to line drawing data.
The perceptual network 𝜙 takes two images 𝐼𝑎 and 𝐼𝑏 and pro-

duces intermediate activation map 𝜙 𝑗 (·) ∈ R𝐷 𝑗×𝐻 𝑗×𝑊𝑗 of layer 𝑗 ,
where 𝐻 𝑗 and𝑊𝑗 are the height and width of the activation map
and 𝐷 𝑗 is the number of channels. The perceptual loss of layer 𝑗 is
formulated as:

L 𝑗
perc (𝐼𝑎, 𝐼𝑏 ) =

1
𝐷 𝑗 × 𝐻 𝑗 ×𝑊𝑗

𝜙 𝑗 (𝐼𝑎) − 𝜙 𝑗 (𝐼𝑏 )

1 . (4)

Given a cropped reference patch 𝑃ref and a target patch 𝐴𝜃 (𝑃tar)
derived from the transformation 𝐴𝜃 and the original cropping 𝑃tar,
we obtain the perceptual loss L 𝑗

perc (𝑃ref , 𝐴𝜃 (𝑃tar)) at layer 𝑗 . The
loss computed from a single layer relu3_3 is shown to be sufficient
to ensure the rough alignment and additional layers lead to degra-
dation. While trained on clean line drawing images, the ASTMs
are generalizable to rough drawings and thus empower the whole
framework to cope with real rough sketches.

3.5.2 Training of Starting Point Matching Model. This model pre-
dicts the matched starting point 𝑝𝑡 ∈ [−1, +1] in the target patch.
As mentioned above, it is trained in the absence of ASTM-P. Our
collected dataset contains vector drawings of the raster frames along
with stroke correspondence information, so ground-truth matchups
exist and allow a supervised training. Given the ground-truth point
𝑝𝑡 , we adopt L1 distance as the loss:

Lmatch (𝑝𝑡 , 𝑝𝑡 ) =
𝑝𝑡 − 𝑝𝑡


1 . (5)

Besides, we introduce a non-stroke point penalty that encourages
the model to predict points lying on stroke pixels by penalizing
predictions in the empty space. We simply use the differentiable
cropping operation in our framework to produce a single-pixel patch
𝐼𝑝𝑡 from the target given the predicted point, which indicates the
pixel value in that position. When assuming a value 0 for the stroke
in black and 1 the empty space in white, we define the penalty based
on the pixel value as:

Lpenalty (𝑝𝑡 ) =
{
𝐼𝑝𝑡 , if 𝐼𝑝𝑡 ≥ 𝜏

0, otherwise,
(6)

where 𝜏 is a threshold to distinguish between a stroke pixel or an
empty one, and set to 0.9 empirically. The total loss is:

Lstart_point = Lmatch + 𝜆penaltyLpenalty, (7)

where 𝜆penalty is a scalar and set to 0.1 during training.

3.5.3 Training of Stroke Tracing and Correspondence Model. At
each step 𝑡 , starting from the center 𝑞𝑡0 = (𝑥0, 𝑦0) = (0, 0), the
model predicts the control points 𝑞𝑡1 = (𝑥1, 𝑦1) and 𝑞𝑡2 = (𝑥2, 𝑦2) as
well as the end point 𝑞𝑡3 = (𝑥3, 𝑦3) of the corresponding stroke 𝑞𝑡 .
They are in a local coordinate system [−1, +1] and mapped back
to global coordinates 𝑄𝑡 = (𝑄𝑡

0, 𝑄
𝑡
1, 𝑄

𝑡
2, 𝑄

𝑡
3) for training. The vector

parametrization data with stroke correspondence in our dataset
enables a supervised training.

Instead of predicting and penalizing all the four points, we fix 𝑄𝑡
0

by using a real one from the dataset and making the model predict
the remaining three points. This training strategy is compatible
with the inference mode producing connected strokes, where 𝑄𝑡

0 is
from the predicted 𝑄𝑡−1

3 . With this strategy, the training efficiency
is significantly increased, and the framework generalizes well when
switching to the inference mode. We adopt L1 distance to measure
the difference between the prediction 𝑄𝑡 and ground truth �̂�𝑡 at all
steps 𝑡 = 1, ...,𝑇 :

Ltracing−L1 ({𝑄𝑡 }, {�̂�𝑡 }) =
1
𝑇

∑𝑇
𝑡=1

(𝑄𝑡
1 − �̂�𝑡

1) + (𝑄𝑡
2 − �̂�𝑡

2) + (𝑄𝑡
3 − �̂�𝑡

3)

1 ,

(8)

where �̂�𝑡
1, �̂�

𝑡
2 and �̂�

𝑡
3 are the points in �̂�𝑡 .

In addition, we also adopt a raster-level loss to improve the fidelity
of fine details in the generated stroke renderings, which further
promotes performance of the parameter prediction. We follow the
raster-level supervision in Virtual-Sketching [Mo et al. 2021], which
passes the original target image 𝐼tar and the final canvas 𝐶𝑇tar into
a QuickDraw-trained VGG-16 model to compute a perceptual loss
with intermediate activation maps (Eq.(4)). We compute the loss
from several layers including relu1_2, relu2_2, relu3_3, relu4_3
and relu5_1, and adopt the loss value normalization technique
in [Mo et al. 2021] to balance them, which forms the final raster-
level loss Ltracing−raster (𝐶𝑇tar, 𝐼tar).
To maintain a balance between the vector-level and the raster-

level losses, we also apply the value normalization technique to the
Ltracing−L1 to produce a normalized one Ltracing−L1−norm. Finally,
the total loss is formulated as:

Lstroke = Ltracing−L1−norm + Ltracing−raster . (9)

4 DATASET

4.1 Overview
To the best of our knowledge, we for the first time collect a large-
scale line drawing dataset containing 10k+ consecutive raster frames
along with their vector drawings with the annotations of one-to-one
stroke correspondence. The frames simulate animated keyframes
with corresponding strokes in 2D animation process. Thus, the
dataset is expected to facilitate research of automatic inbetweening.

Collecting such a dataset fully with human effort, i.e., by manually
drawing keyframes with vector strokes and then identifying the
stroke correspondence, is laborious and time-consuming. To reduce
the human labor, we turn to an automatic algorithm followed by
manual review. The presented automatic algorithm applies trans-
formations to existing vector line drawings (denoted as reference)
to produce deformed ones with stroke correspondence (denoted as
target). The resulting target frames exhibit dynamics with respect to
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Comparisons of stroke combination Comparisons of manual review

Deformation 
(valid)

Deformation 
(invalid)

Reference Deformation 
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Deformation 
(invalid)

(a)

(b)

(c)

(e)

(f)

(d)

Fig. 7. In our dataset, we deform the reference vector drawings through an
automatic algorithm followed by manual review, to mimic the consecutive
animated keyframes with vector stroke correspondence.

the reference, as shown in Fig. 7. Artifacts such as improper stroke
distribution and stroke ambiguity may be induced by the automatic
generation, so subsequent manual review is done to filter out un-
desired deformations. Compared with manual stroke tracing and
correspondence identification, the reviewing process requires much
less workload from human.

We build our dataset upon a vector sketch dataset TU-Berlin [Eitz
et al. 2012], which contains 20,000 sketches from 250 object cat-
egories and stores temporal order of strokes in SVG with cubic
Bézier curves. In this dataset, the strokes are short and a sketch
tends to store a great number of strokes. To eliminate unnecessar-
ily short strokes, we merge every two of them into one. After the
pre-processing, we obtain 11,000+ sketches with 4 to 50 strokes. To
increase the training efficiency, we define a maximum sequence
number as 40. Thus, strokes exceeding the maximum length are
directly deleted. We randomly select 11,000 pairs, and split them
into a training and a validation sets with 10,000 and 1,000 pairs,
respectively.
After applying the automatic algorithm and the manual review,

the paired frames and the ground-truth vector stroke correspon-
dence are obtained. The vector strokes are rendered into raster
images of size 320 × 320 (with a padding 40) via DiffVG [Li et al.
2020] with a stroke thickness 1.2. Please refer to supplemental docu-
ment for more statistics of the dataset. During testing and inference,
we collect real line drawings (both clean and rough) from research
papers and existing datasets with animated frames (e.g., Creative-
Flow+ [Shugrina et al. 2019]), and create the vector drawings for the
starting reference frames via a digital painting software Krita [2023].

4.2 Automatic Algorithm
Our automatic algorithm applies two types of deformations to the
vector sketches to produce the corresponding frames: entirety-level
and group-level, which mimics the real animated frames typically
with non-rigid motions. The entirety-level deformation is first ap-
plied to transform the sketch globally, followed by the group-level
one that deforms a group of strokes (e.g., a stroke chain). Both de-
formations are sampled according to a probability P𝑝𝑟 , as listed

Table 1. Parameters of the deformations for generating the dataset.

Entirety-level Group-level

Probability P𝑝𝑟 P𝑝𝑟 = 0.95 P𝑝𝑟 = 0.8
Translation P𝑡𝑥 , P𝑡𝑦 (px) −20 ≤ P𝑡𝑥 , P𝑡𝑦 ≤ 20 −10 ≤ P𝑡𝑥 , P𝑡𝑦 ≤ 10
Rotation angle P𝑟 (◦) −30 ≤ P𝑟 ≤ 30 −15 ≤ P𝑟 ≤ 15
Scaling factor P𝑠𝑥 , P𝑠𝑦 0.7 ≤ P𝑠𝑥 , P𝑠𝑦 ≤ 2.0 0.8 ≤ P𝑠𝑥 , P𝑠𝑦 ≤ 1.3
Shearing angle P𝑠ℎ (◦) −20 ≤ P𝑠ℎ ≤ 20 −10 ≤ P𝑠ℎ ≤ 10

in Table 1. We use four types of transformations: translation, ro-
tation, scaling and shearing. A random number of 𝑛 (= 1, 2, 3 or
4) types are combined to form the 2D affine transformation. The
translation moves the strokes by a random offset (P𝑡𝑥 ,P𝑡𝑦 ). The
rotation, scaling or shearing is done based on a center of any point
in the sketch/group, with a random rotation angle P𝑟 , scaling fac-
tors (P𝑠𝑥 ,P𝑠𝑦 ) or shearing angle P𝑠ℎ , respectively. The shearing
is done randomly in 𝑥 or 𝑦 direction. Transformation that leads to
out-of-bound strokes is considered invalid and a new one is sampled
repeatedly until a valid one is generated.

The transformation may lead to an issue that visually connected
strokes in the reference are disconnected in the target due to the
individual deformations of the stroke chains, as shown in Fig. 7-
left. To overcome this issue, stroke chains with close endpoints are
combined as a group and undertake the same transformation.
Note that the sampled deformation parameters are not stored

into our dataset as the supervision data for the ASTMs. The reason
is that the sampled transformation is not optimal to align patches
when other strokes with individual deformations change the content
inside the patches simultaneously.

4.3 Manual Review
As shown in Fig. 7-right, the automatic algorithm tends to induce
artifacts, e.g., improper stroke placement that leads to unreasonable
structure variation (d), stroke ambiguity and occlusion (e & f). They
are detrimental to the judgment of stroke correspondence. Hence,
we improve the quality of the data through manual review that
keeps human in the loop. To this end, we invite 15 participants to
filter out the undesired deformations, each assigned 700 to 750 pairs
of the frames. Once a deformed drawing is marked undesired, a new
deformation based on another sampled transformation is produced
for reviewing again. This procedure repeats until all the assigned
examples are regarded valid.

5 EXPERIMENTS

5.1 Implementation Details
The definition of initial window size for both reference and target
is critical in the cropping operations commonly used in the frame-
work. In ASTM-P, a random size ranging from 224 to 320 is used
during training to increase the data diversity. While in inference,
we use 0.6× the input image size to accommodate to various input
resolutions. In the starting point matching model, a fixed size of 256
is used as we assume ASTM-P has reduced the spatial variations.
In ASTM-S and the stroke tracing and correspondence model, we
use a dynamic window size that is 1.5× the length of each reference
stroke.
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Table 2. Ablation study in starting point matching model. Values of the
metric are in e-2.

Target canvas Reference stroke Penalty ASTM PE(↓)
××× ✓ ✓ ××× 2.18
✓ ××× ✓ ××× 1.72
✓ ✓ ××× ××× 1.63
✓ ✓ ✓ ××× 1.58

✓ ✓ ✓ ✓ 1.14

Table 3. Ablation study in stroke tracing and correspondence model. Values
of the metrics are in e-2.

ASTM Loss pre-trained ASTM PS(↓) EPE(↓) APE(↓)
#1 ××× Ras. & Vec. - 0.84 1.75 4.66
#2 ✓ Ras. ✓ 0.82 1.64 9.50
#3 ✓ Vec. ✓ 0.78 0.92 2.83
#4 ✓ Ras. & Vec. ××× 0.69 1.24 3.82

#5 ✓ Ras. & Vec. ✓ 0.59 0.93 2.95

Reference Ours w/o target canvas w/o ref. stroke

Fig. 8. Visual results of ablation study in starting point matching model. The
blue stroke in reference indicates the stroke that the starting point belongs
to. Red dots denote the ground truth and green ones are the predictions.
Sub-figure shows the previous target canvas.

The prediction networks in the two models and the ASTMs are
built with CNN and MLP/RNN, so we define a fixed input image
size as 256 for those in the ASTM-P and the starting point model,
and 192 for those in the ASTM-S and the stroke model. Please refer
to supplemental document for network details.

5.2 Quantitative Evaluation Metrics
We use our validation set for quantitative evaluations of our design
choices. For the starting point matching task, we adopt point error
(PE) as the metric, which measures the Euclidean distance between
the predicted point and the ground truth. In terms of the stroke
tracing and correspondence task, we use three metrics: (1) percep-
tual score (PS) from [Mo et al. 2021] that measures the raster-level
similarity between the final canvas and the input target frame, (2)
endpoint error (EPE) which assesses the vector-level accuracy of
one-to-one stroke correspondence by computing the Euclidean dis-
tance between the predicted endpoint and the ground-truth one,
and (3) all-point error (APE), another vector-level metric, that addi-
tionally accounts for the prediction accuracy of the control points
with Euclidean distance on the basis of EPE.

5.3 Ablation Study
In the starting point matching model, we validate the effectiveness
of the inputs and the introduced non-stroke point penalty, and
quantitative results are shown in Table 2. When target canvas is not

Vector loss onlyOurs (Vector + Raster)Reference Ground-truth

Ground truth

Predicted

Ground truth

Predicted

Reference Raster loss only Ground-truthOurs (Vector + Raster)

Fig. 9. Ablation study of loss type in stroke tracing and correspondence
model. Length proportions of strokes are shown in top row.

used as input, the model suffers the worst performance, because it
may predict points incorrectly in the already drawn areas (see Fig. 8).
Without reference stroke as the guidance, the model probably lacks
the ability to resolve stroke topology ambiguity and fails to locate
the matching position when stroke connectivity changes.
In the stroke tracing and correspondence process, we study the

loss type. As shown in Table 3, when using the raster loss only,
the performance decreases, especially in the vector-level metrics.
Typically, it is difficult for the raster loss to ensure the vector cor-
respondence, i.e., the length proportion of the strokes, even with a
redrawing consistent with the target frame. Figure 9-top shows an
example where the produced proportion is worse than ours. When
using the vector loss only, the vector metrics are slightly better than
ours, while the raster metric is much worse. We observe the vector
loss fails to account for the fidelity of pixel-level fine-grained details,
especially when a stroke is long (Fig. 9-bottom).

5.4 Comparisons with Existing Approaches
5.4.1 Evaluation Settings. To the best of our knowledge, we for
the first time propose a framework on predicting vector stroke
correspondence for consecutive raster keyframes according to the
only vector drawing from the starting frame. Therefore, we adapt
existing approaches for this task to form baseline methods, mainly
including methods based on (1) raster correspondence or (2) vector
stroke correspondence.

Based on Raster Correspondence. The raster correspondence pre-
dicted by two raster keyframes can be used to advect the vector
control points from the starting drawing, such that the strokes are
moved towards the next frame. To obtain the raster correspondence,
we take into account two lines of methods: optical flow or image
registration. For the optical flow-based method, we try different
approaches, both classic (PWC-Net [Sun et al. 2018] and RAFT [Teed
and Deng 2020]) and the latest (GMA [Jiang et al. 2021a] and GM-
Flow [Xu et al. 2022b]), trained on different 2D animation datasets
(CreativeFlow+ [Shugrina et al. 2019] or AnimeRun [Siyao et al.
2022]). GMA trained on the AnimeRun dataset is found to work the
best. In terms of the image registration algorithms, we try both a
deep learning-based method APES [Xu et al. 2022a] designed for 2D
cartoon frames and a non-deep learning algorithm introduced by
Wang et al. [2021] tailored for non-rigid registration of line draw-
ings [Xiao et al. 2022]. The latter is an energy-based optimization
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Ours
(vector)

Optical flow + 
Advection

Image registration + 
Advection

Target input
(raster)

Reference input 
(raster)

(380px)

DiffVG +      
Optimization

Reference input 
(vector)

(1024px)

© Disney

Fig. 10. Comparisons with baseline methods based on raster correspondence. Sub-figures in square box are warped reference images by the predicted optical
flows or registration maps (magenta drawing denote the target). Please refer to supplemental document for more results. Hand from paper [Whited et al.
2010] ©2010 Blackwell Publishing Ltd. Eagle from paper [Yang 2017] is courtesy of Jie Li ©2018, IEEE.

OursReference input (vector)Reference input (raster) Target input (raster) AlphaContours + Functional maps

(480px)

(1193px)

Fig. 11. Comparisons with a baseline method based on vector stroke correspondence. Sub-figures on the rightmost are sketch shapes computed by
AlphaContours [Myronova et al. 2023] (top) and functional maps indicating the correspondence [Ovsjanikov et al. 2012] (bottom). Arm from paper [Yang
2017] is courtesy of Jie Li ©2018, IEEE. Robot from paper [Yang et al. 2018] is courtesy of Yovanny Ramirez ©2018 John Wiley & Sons Ltd.

algorithm that aligns raster drawings by maximizing their cross cor-
relation over a dense displacement field. It is done in a coarse-to-fine
manner, employing an affine transformation and several B-spline
transformations first to initialize the displacement field used for
subsequent dense deformation. The non-deep learning method is
found to work better.

We additionally compare to another optimization algorithm that
uses a differentiable renderer DiffVG [Li et al. 2020] to directly
optimize the reference vector strokes to best align with the drawing
in the target keyframe. A raster loss plus a Laplacian regularization
term for preventing severely distorted strokes are adopted during
the optimization. To speed up convergence, we advect the strokes
along the optical flows mentioned above as the initialization.

Based on Vector Stroke Correspondence. We first apply a vector-
ization algorithm to the raster target frame, and then compute the
stroke correspondence at vector level. Note that a potential issue
of this solution is the vectorization process may generate a vector

drawing with a different number of strokes from that in the ref-
erence. This issue tends to disable the one-to-one correspondence
required by our task.

In the vectorization step, we exploit PolyVectorization [Bessmelt-
sev and Solomon 2019] to generate vector drawings consisting of
polylines. Then, we use a combination of AlphaContours [Myronova
et al. 2023] and Functional Maps [Ovsjanikov et al. 2012], which is
designed for the stroke correspondence between vector drawings
even with different numbers of strokes. This solution generates
vertex-wise functional correspondence between sampling points on
the strokes, and a discrete optimization [Ren et al. 2021] technique
is exploited to compute point-wise correspondence. Based on the
result, we adopt a simple strategy to compute the stroke-level cor-
respondence. For each target stroke, its correspondence is voted by
its points with associated points on the reference strokes. We do
not try a complex strategy as we find the predicted functional maps
are somewhat less than satisfactory.
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5.4.2 Results. The comparisons with raster correspondence-based
approaches are shown in Fig. 10. The optical flow-based method
struggles with large non-rigid motions (index finger in top-row
example) and repeated patterns (wings in bottom-row example),
and thus the results with strokes advecting along the problematic
flows are largely misaligned with the target drawings. Using such
results as initialization, DiffVG optimization produces results with
more strokes aligned, although it tends to fall into local optimum
(i.e., strokes at both sides of the index finger move to a single side
in the target image). This is probably because the independent
optimization of all the strokes without interactions with each other
is so non-convex that every stroke tends to converge towards the
nearest line in the target drawing. While the image registration-
basedmethodworks better than the previous two baselines, it fails to
warp strokes with non-rigid deformations.When the stroke shape or
connectivity varies between the reference and the target, the results
still inherit those from the reference. In sharp contrast, our results
exhibit high alignment with the target drawings in the presence of
large motions, as well as good stroke correspondence.
The comparison with the solution built on vector stroke corre-

spondence is shown in Fig. 11. Even with similar sketch shapes
computed by the AlphaContours algorithm [Myronova et al. 2023],
the functional maps exhibit incorrect vertex-wise correspondence
(bottom-row example) that is detrimental to the final stroke-level
correspondence. This is attributed to the varying numbers and
lengths of the strokes between the input reference vector drawing
and the vectorized target one consisting of a large number of short
polylines. The inconsistent geometric composition induces varying
triangulations even within the similar sketch shapes, which harm
the performance of the functional maps (please refer to the supple-
mental document for more analyses). Another issue is that even if
the functional correspondence is fine, the different stroke numbers
hinder one-to-one correspondence by definition. As shown in the
top-row example, while some short strokes are correctly matched
(see green arrows), the long ones fail (see yellow arrows). In contrast,
our approach, without the need of a combination of separated tech-
niques, directly produces vector drawings with consistent stroke
numbers and reasonable one-to-one correspondence that is desired
in the automatic inbetweening.

5.5 Generalization to Rough Drawings
While our approach is trained with clean line drawing images, it
generalizes well to rough ones. We try different types of rough
drawings, including line-based renderings of 3D characters from
CreativeFlow+ dataset [Shugrina et al. 2019], sketches drawn with
stylus with overdrawn strokes, and pencil drawing photographs
with shadow and non-pure background. The vector inputs for the
starting frames are manually traced with simplified strokes. As
shown in Fig. 12, the rough drawings are notably different from the
clean ones, which exhibit sketchy strokes and different amounts
of perturbations of stroke thickness. The result shows that our
approach still works well on these unseen drawing styles, even in
the presence of non-rigid motions. We attribute the success to our
proposed ASTM, which is robust enough to align the rough patches
and reduce the drawing variation (please refer to Section 5.6 formore

Raster keyframe 1
(input)

Raster keyframe 2
(input)

Vector keyframe 1 
(input)

Vector keyframe 2 
(output)

(750px)

(831px)

(640px)

© Disney

Fig. 12. Result on different types of rough drawings. Sub-figure in box shows
differences between consecutive frames, with magenta for the previous and
black for the current. Paladin is from [Shugrina et al. 2019]. Hand images
from paper [Whited et al. 2010] ©2010 Blackwell Publishing Ltd.

analyses and justification). With such a promising property, our
approach is compatible with the standard 2D animation workflow
mostly starting with rough sketching and thus helps to promote the
production efficiency.

5.6 Effectiveness of ASTM
Our proposed adaptive spatial transformation module (ASTM) takes
effect in content alignment that benefits subsequent starting point
and stroke models. As shown in Fig. 13, we test its robustness to
both near-linear transformations (e.g., rotation (b1), scaling (b2)
and translation (b3)) and more commonly seen non-linear ones (e.g.,
(b4), (b5) and (b6)). Albeit with non-linear or non-rigid deformations
such as shape distortion and topology change, the ASTM is able to
adaptively predict linear transformations (see (a)) to roughly align
the patches and reduce spatial variations. This is because the ASTM
learns to make use of all the visual cues in the patches to make
them as similar as possible. Although the alignment is sub-optimal,
it brings obvious improvements to the subsequent predictions of
starting points or strokes while helping to improve their fault tol-
erance and reliability. We also show patches ((a)/(b4) and (b5)) of
rough drawings from Fig. 12, and the reasonable transformations
confirm that the ASTM trained on clean drawings is also applicable
to rough ones. This aids our framework in generalizing to rough
sketches.
Table 2 shows quantitative comparisons between starting point

matching models with and without the ASTM-P, where we can see
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Reference Target Target (warped)

(b1)

(b3)

(b2)

Reference Target Target (warped)

(b6)

(b5)

(b4)

Reference frame Target frame Predicted transformation Warped patch

Transformed
Cropping

(a) Transformation prediction & Transformed cropping

(b) Visualization of warped target patch

Fig. 13. (a) Effectiveness of ASTM that predicts a transformation to roughly
align the target patch with the reference. (b) More examples of warped
patches from the target. Drawings inmagenta underneath are the references.
Reference strokes at current step are highlighted in blue. See the predicted
transformations and more results in supplemental document.

Reference

(a) Starting point matching model

w/o ASTM with ASTM

Target (GT)

(b) Stroke tracing and correspondence model

(c) Combined workflow

Fig. 14. Comparisons between models with and without the ASTM. Car
and Stick from paper [Yang 2017] are courtesy of Jie Li ©2018, IEEE.

ASTM-P offers a significant performance boost. Qualitative results
are shown in Fig. 5-top row and Fig. 14-(a). Both examples indicate
that the ASTM-P benefits the matchup prediction by transforming
the target patches into those roughly aligned with the reference.

*

*

(640px)

(680px)

Fig. 15. Results on multiple clean keyframes. Only vector drawings of the
starting frames (withmarks ‘∗’) are provided. Car and Stick from paper [Yang
2017] are courtesy of Jie Li ©2018, IEEE.

To evaluate the stroke tracing and correspondence model inde-
pendent of the starting point matching model, we use real starting
points from the dataset for each stroke chain to conduct this ablation
study. Quantitative results in Table 3 manifest the significance of
the ASTM-S, which notably boosts the performance in both raster
and vector metrics. Qualitative results in Fig. 5-bottom row and
Fig. 14-(b) show that in the absence of the ASTM-S, the model fails
to handle large geometric deformations, and draws strokes with
incorrect orientation or proportion of length. Since we use a pre-
trained ASTM-S when training the tracing model, we also study the
effectiveness of the pre-training. As can be seen in Table 3-#4, when
we use a randomly initialized ASTM-S and train it with the tracing
model jointly, the performance degrades to a certain degree.

When combining the two models, i.e., using the predicted starting
points for each stroke chain, we show how a starting point matching
model without the ASTM-P affects the whole process. As shown
in Fig. 14-(c), with an incorrectly predicted starting point (see the
arrow), it is too difficult to redraw the strokes correctly. Thus, a
terrible result is produced. In contrast, correct starting point predic-
tions with the ASTM-P promote the overall performance of joint
stroke tracing and correspondence.

5.7 Results on Multiple Raster Keyframes
Our approach also works with more than one target keyframes,
dependent exclusively on the starting vector drawing, by forward
propagating the generated vector results, i.e., using the generation
as a second reference. This task is much more challenging due to
the continuous motion difference that induces incremental topol-
ogy variations. A high prediction accuracy is required, otherwise
the error accumulation probably leads to worse and worse results
in the latter frames. As demonstrated in Fig. 15 and Fig. 16, our
approach produces promising results on both clean and rough draw-
ings, which corroborate the effectiveness of our framework in high
fidelity of vectorization and accuracy of stroke correspondence.
Furthermore, they also indicate our approach suits well with the
automatic inbetweening process with a series of keyframes.
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*

*

Raster keyframe 1
(750px)

Raster keyframe 2 Raster keyframe 3Vector keyframe 1 
(input)

Vector keyframe 2 
(output)

Vector keyframe 3 
(output)

Fig. 16. Results on multiple rough keyframes. Only vector drawings of the starting frames (with marks ‘∗’) are provided. Sub-figures in boxes show differences
between consecutive frames, with magenta for the previous and black for the current. Bigvegas1 and Xbot are from [Shugrina et al. 2019].

Due to the imperfect prediction, error accumulation does exist
and gives rise to degradation, as shown in the second example
in Fig. 15. While 3 strokes are incorrectly predicted (see arrows),
they could be adjusted with a few manual editings quickly in an
interactive system (see Section 5.9) and then used for inbetweening.
This requires much less labor and time comparing to redrawing the
entire keyframe.

5.8 Sensitivity to Initial Vectorization
Evaluation Settings. Our framework relies on the initial vector

input of the starting keyframe, so we evaluate its robustness and
sensitivity to the input vectorization in two aspects: (1) stroke order
and (2) stroke number or length. For the stroke order, we randomize
the order of the stroke chains of the input vector drawings. More-
over, we randomly reverse the drawing order of each stroke chain.
These operations also perturb the choice of initial starting point. We
generate 5 random results for the evaluation. As for the sensitivity
to stroke number or length, we create an input vector drawing with
longer strokes for each original vector input (e.g., short strokes are
merged into a single continuous line), so that the number of strokes
is decreased.
We conduct the evaluation with real clean drawings and real

rough ones. Due to the lack of ground-truth, we manually count
the number of incorrect strokes, including those in wrong corre-
spondences or wrong trajectories that need manual fix. We invite
3 people to count the incorrect strokes of the outputs above, and
report the averaged results.

Robustness to Stroke Order. As can be seen in Fig. 17, our approach
shows equally good performance on vector drawings with different
stroke orders or initial starting points. The averaged numbers of
incorrect strokes over the 5 results with randomized stroke orders
are shown in block ‘Short strokes’ of Table 4 (column #incorrect).
Albeit with order perturbations, the numbers of incorrectness are

Stro
ke o

rd
er

Output - order 1 Output - order 2 Output - order 3

Fig. 17. Results with different stroke orders. Sub-figures show the stroke
orders. We show 3 out of 5 orders and omit reference vector frames here
for brevity. Please refer to supplemental document for complete and more
results. Eagle from paper [Yang 2017] is courtesy of Jie Li ©2018, IEEE. Xbot
is from [Shugrina et al. 2019].

small in a low error rate (most less than 3%). Those wrong strokes
can be fixed quickly in an interactive user interface (see Section 5.9).
The results indicate that our approach is robust enough to be inde-
pendent of input vector drawings with a reasonable stroke order or
a well-defined initial starting point.

Sensitivity to Stroke Number or Length. A vector drawing with
longer strokes tends to yield a small number of strokes. As shown
in Fig. 18, our method also works with some long strokes merged
from several shorted ones (see yellow arrows). For the rough sketch,
we use a more simplified input drawing with about 60% strokes, and
the resulting output is corresponded to the respective input with
skipped details and longer strokes. We do notice the framework per-
forms less than satisfactory on some other long strokes with worse
alignment with the target, as pointed out by red arrows in Fig. 18
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Raster inputs Vector 1 (short strokes) Vector 2 (long strokes)

Fig. 18. Results with different numbers or lengths of strokes. See more in
supplemental document. Gunman from paper [Yang et al. 2018] is courtesy
of Eugene Babich ©2018 JohnWiley & Sons Ltd. Bigvegas2 is from [Shugrina
et al. 2019].

Table 4. Statistics of drawings and numbers of incorrect strokes counted
manually. Marks ‘#’ denote the number. For short strokes, the numbers
of incorrect strokes are averaged over 5 random orders as introduced in
Section 5.8, and are rounded up to integers. Percentages denote error rate.

Short strokes Long strokes
Image Location #stroke #incorrect #stroke #incorrect

Arm Fig. 11-top 38 2 (5.3%) 31 5 (+3)
Hand Fig. 10-top 45 1 (2.2%) 29 4 (+3)
Stick Fig. 15-bottom 61 2 (3.3%) 55 3 (+1)
Car Fig. 15-top 97 4 (4.3%) 80 6 (+2)
Eagle Fig. 10-bottom 129 3 (2.3%) 108 9 (+6)
Robot Fig. 11-bottom 239 4 (1.7%) 205 9 (+5)

Gunman Fig. 1-top 274 4 (1.5%) 242 8 (+4)
Paladin Fig. 12-top 153 4 (2.6%) 125 5 (+1)
Xbot Fig. 16-bottom 154 2 (1.3%) 118 3 (+1)

Bigvegas1 Fig. 16-top 214 1 (0.5%) 156 1 (+0)
Bigvegas2 Fig. 1-bottom 307 5 (1.6%) 181 4 (−1)

where the gray drawings underneath indicate the misalignment.
The performance drop is also suggested by the increased numbers
of incorrect strokes shown in block ‘Long strokes’ of Table 4. In
a word, our approach copes with long strokes to a certain extent,
while still suffering from slight performance degradation. This is
probably because the framework is trained on a relatively simple
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Fig. 19. Runtime comparison. Please refer to supplemental document for
numerical ones.

dataset with insufficient complexity, where long lines are mostly
split into short segments as can be seen in Fig. 7. As we make the
first attempt to assemble such a dataset with less human workload to
tackle the more challenging joint stroke tracing and correspondence
task, we believe the applicability of our approach to long strokes
could be improved with more complex training data.

5.9 Runtime Comparison
We report the runtime of our approach and the baseline methods
introduced in Section 5.4 to evaluate how much our method helps
the 2D animation pipeline. An experienced CACANi user is in-
vited to manually fix our automatically generated results, and the
time he took is summated to that of the model inference. We com-
pare to methods DiffVG optimization [Li et al. 2020] and image
registration [Wang et al. 2021]. Optical flow method [Jiang et al.
2021a] (near-real-time) and vector stroke correspondence-based
one [Myronova et al. 2023] are ignored due to their much worse
performance. The user is also asked to operate on the CACANi soft-
ware to manually produce the target vector drawings with stroke
correspondence, by either tracing the target images from scratch
or editing the reference vectors. This derives a time of doing by
hand. The automatic algorithms above are tested under the same
environment on a Ubuntu machine with an Intel Xeon Platinum
8375C @ 2.90GHz CPU, 252GB RAM, and an NVIDIA GeForce RTX
3090 GPU.
As illustrated in Fig. 19, the image registration method takes

comparable runtime to ours, while its overall visual performance
is worse. DiffVG takes a lot of time to optimize. The runtime of
our automatic algorithm is proportional to the number of strokes.
Thanks to the high accuracy in stroke tracing and correspondence,
it does not take a long time for users to fix our results manually.
Thus, our method combined with manual fixing is much faster than
if done by hand in general, except for the case “Robot” in Fig. 11, in
which the deformation is exactly linear (i.e., the bottom is invariant
and the head rotates around the center) so that the user edited the
reference with a built-in rotation tool quickly. The runtime com-
parisons above suggest that our approach is effective and friendly
enough to practical use in real-life 2D animation workflow.

5.10 Inbetweening and 2D Animation
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DAIN RIFE

AnimeInbet Ours + CACANi

First (pink) and 
last (black) frames

DAIN RIFE

AnimeInbet Ours + CACANi

First (pink) and 
last (black) frames

Fig. 20. Comparisons of inbetweening results. Please refer to the supplemental video for animations and more results. Eagle and Stick from paper [Yang 2017]
are courtesy of Jie Li ©2018, IEEE.

The keyframes with vector stroke correspondence produced by our
framework can be directly imported into an existing inbetweening
product, e.g., CACANi [2020], to generate inbetween frames. Albeit
with minor artifacts as shown in Fig. 15, they can be manually
corrected with a few interactions readily (e.g., adjusting 3 strokes)
in the inbetweening software. Afterwards, we use built-in stroke
interpolation tools in CACANi to generate the inbetweens.

We also compare with representative framerate upsampling meth-
ods DAIN [Bao et al. 2019] and RIFE [Huang et al. 2022], and a recent
line drawing inbetweening method named AnimeInbet [Siyao et al.
2023]. We adopt their officially released model weights and param-
eters. For AnimeInbet that requires vertices of vector drawings
as inputs, we try vectorization methods that generate polylines,
namely PolyVectorization [Bessmeltsev and Solomon 2019] and Sin-
gularityFree [Guţan et al. 2023], and show the better results. The
comparisons are shown in Fig. 20, where DAIN performs poorly
with duplication of drawings and blurry artifacts in the presence of
repeated patterns and large motion. RIFE works better than DAIN,
while producing blur and disappearance of strokes. The issues above
arise commonly in raster inbetweening approaches that predict dis-
crete pixels instead of compact strokes. AnimeInbet tends to produce
inbetween frames with discontinuous lines because its visibility
prediction for stroke vertices struggles with real drawings instead
of line renderings of 3D models with which it trains. Compared
with these alternatives, our method together with the interpolation
algorithms in CACANi yields clean inbetweens with high curve
continuity, which confirms that our approach suits well with the
standard automatic inbetweening process.

6 LIMITATIONS AND DISCUSSION
While our approach produces promising one-to-one vector stroke
correspondence in a fully automatic way, it may fail in cases with oc-
clusion, topology change and complex non-rigid motions. The first
two issues are common while challenging in automatic inbetween-
ing, and the majority of existing systems resolve them through user
interactions [Even et al. 2023; Jiang et al. 2022; Whited et al. 2010;
Yang 2017; Yang et al. 2018].

Reference input (raster) Reference input (vector) Target input (raster) Output

Fig. 21. Results on examples with occlusion. Images from paper [Yang et al.
2018] are courtesy of Zirong Low ©2018 John Wiley & Sons Ltd.
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Fig. 22. Failure cases with topology (line structure) change. We use image
A as reference and B as target, and then reverse. Numbers in the images
indicate the stroke variations. Note that image A is different from those
displayed before, with manual modification to yield topology variance. Eagle
from paper [Yang 2017] is courtesy of Jie Li ©2018, IEEE.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:16 • Mo et al.

Figure 21 shows two examples involved with occlusions, which
make strokes appear in the first one and disappear in the second. In
the first example, our method works based on a common solution by
drawing additional occluded lines that overlap with other strokes in
the reference vector input (see arrows). When the strokes disappear
as shown in the second example, our approach fails inevitably due
to the lack of depth information and draws unreasonable strokes.
User interactions are required to resolve the occlusion, such as
defining visibility toggles [Yang 2017; Yang et al. 2018] or boundary
strokes [Jiang et al. 2022].

Topology change also leads to stroke appearing or disappearing,
as indicated by the numbers in Fig. 22. When using image A as
reference and B as target with appearing strokes (the left-most
column), we try the same solution with occluded lines (overlaps are
pointed by arrows) but it fails in this case. This is because the shapes
and orientations between the occluded lines and the appearing
strokes vary significantly. Here a few manual adjustments could
refine the results. In the reversed scenario (B as reference and A
as target, the right-most column) where strokes disappear, similar
to the occlusion case, the framework draws unnecessary strokes.
Besides the solutions with visibility toggles or boundary strokes,
automatically predicting a visibility variable for each stroke could
be a future extension of our approach.

Our introduced ASTM predicts affine transformations for rough
alignment between patches, which is shown to work on some cases
with non-linear deformations (Section 5.6). However, the linear
transformations are still insufficient to handle drawings with com-
plex non-rigid motions, such as a straight line evolving into a bump
or a highly curved (near-circular) stroke. We show such a failure
case in supplemental document. Non-linear transformations, such
as Thin-Plate Spline (TPS) [Zhao and Zhang 2022] could be incor-
porated as an extension. Given that our ASTM is required to be
invertible and TPS is generally irreversible analytically, there still
exist open problems that are out of scope for our paper and worth
addressing in future work.

7 CONCLUSION
We focus on a fundamental step in automatic inbetweening, redraw-
ing raster keyframes with vector strokes while ensuring one-to-one
stroke correspondence, and propose an automatic method to reduce
the tedious manual efforts. An adaptive spatial transformation mod-
ule (ASTM) is introduced to handle non-rigid motions and stroke
distortion, which also aids the framework in coping with rough
animated frames. A line drawing dataset with annotation of vector
stroke correspondence is collected, and is expected to advance the
research in inbetweening community. While the approach shows
compelling results, it performs less than satisfactory in cases with
occlusion and topology change, which are common issues in real in-
betweening scenario. The incorporation with interactive operations
could be a promising future direction.
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